cesar martinez

Generation

generate functionTue, 09 May 2023

Semillas genéticamente similares son asignadas aleatoriamente a dos tratamientos; un entorno nutricionalmente enriquecido (tratamiento) y el entorno tradicional (grupo de control). Después de cierto tiempo las plantas son cosechadas, secadas y pesadas. Sea Ykj la k -ésima observación, (peso en gramos) k=1,2…,K , en el grupo j , j=1,2 . Asuma que la respuesta Ykj son variables aleatorias independientes con Ykj∼N(μj,σ2) . Se desea probar, vía comparación del ajuste de modelos, la hipótesis H0:μ1=μ2 (las medias de tratamiento y control son las mismas) frente a H1:μ1≠μ2 , (las medias de tratamiento y control son las distintas) Para la estimación de los parámetros por máxima verosimilitud es necesario maximizar la función de log--verosimilitud, en el caso del modelo bajo la hipótesis nula es necesario maximizar l∗0(μ;y)=12JKlog(2πσ2)−12σ2∑j=12∑k=1K(Yjk−μ)2 mientras que en el caso del modelo bajo la hipótesis alternativa se debe maximizar l∗1(μ1,μ2;y)=12JKlog(2πσ2)−12σ2∑j=12∑k=1K(Yjk−μj)2 . Cuando se asume que los dos tratamientos tienen la misma varianza, como lo sugiere el modelo, un estimador insesgado para σ2 es σˆ2=S2p=(n1−1)S21+(n2−1)S22n1+n2−2 Usando S2p como estimación de la varianza común de los dos tratamientos, evalúe 2(lˆ1−lˆ0) donde lˆ1 y lˆ0 son las log-verosimilitudes de los modelos bajo H1 y H0 respectivamente y donde el gorro indica que se han reemplazado los parámetros por sus estimaciones. Los datos se muestran en la siguiente tabla y Trat 10.1 Trt 6.4 Trt 10.9 Trt 11.5 Trt 5.8 Trt 10.6 Trt 8.0 Trt 4.7 Trt 8.7 Trt 11.8 Trt 13.0 Trt 3.2 Trt 10.2 Trt 9.7 Trt 8.8 Trt 7.1 Trt 21.2 Cont 19.3 Cont 19.5 Cont 26.3 Cont 20.4 Cont 24.7 Cont 14.3 Cont 21.0 Cont 17.1 Cont 26.9 Cont 17.4 Cont 23.5 Cont 26.2 Cont 20.3 Cont 20.0 Cont 18.6 Cont

# Pregunta 3 # Estimación de la varianza común # Log-Verosimilitud bajo la H0 # Log-Verosimilitud bajo la H1 # 2(lˆ1−lˆ0)

Questions about programming?Chat with your personal AI assistant