generate functionThu, 30 Mar 2023

given two dataframes calculate the absolute error of mean values of the columns "NEVs" and "MWhT" grouped by the columns "time" and "Volt" and the mean absolute error of both dataframes

def calculate_errors(df_model, df_measurements): df_model_agg = df_model.groupby(["time", "Volt"]).agg({"MWhT": "mean", "NEVs": "mean"}) df_measurements_agg = df_measurements.groupby(["time", "Volt"]).agg({"MWhT": "mean", "NEVs": "mean"}) df_abs_error = df_model_agg - df_measurements_agg df_abs_error["abs_error"] = df_abs_error.apply(lambda x: abs(x["MWhT"]) + abs(x["NEVs"]), axis=1) df_abs_error_mean = df_abs_error.mean() mean_abs_error = df_abs_error_mean["abs_error"] return mean_abs_error

Want to kickstart your project?Use the new AI Studio to create your code