generate functionThu, 04 May 2023

Haz un ejemplo de la aplicación de la librería PyGAD Python para algoritmos genéticos

import PyGAD as pg import random # Defining the fitness function for the genetic algorithm to optimize. def fitness_func(x): return (x[0] - 5)**2 + (x[1] - 5)**2 + (x[2] - 5)**2 + (x[3] - 5)**2 + (x[4] - 5)**2 # Defining the lower and upper bounds for the variables. lower_bound = [0, 0, 0, 0, 0] upper_bound = [10, 10, 10, 10, 10] # Initializing the genetic algorithm to solve the problem. ga_instance = pg.genetic_algorithm(parameters_ga) # Running the genetic algorithm to solve the problem. ga_instance.run() # Getting the best solution after running the genetic algorithm. best_solution, best_fitness, fitness_list = ga_instance.best_solution()

Want to kickstart your project?Use the new AI Studio to create your code